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Abstract 

We revisit and extend the original definition of discrete-time stochastic Petri nets, 

by allowing the firing times to have a "defective discrete phase distribution". We show 

that this formalism still corresponds to an underlying discrete-time Markov chain. The 

structure of the state for this process describes both the marking of the Petri net and 

the phase of the firing time for of each transition, resulting in a large state space. We 

then modify the well-known power method to perform a transient analysis even when 

the state space is infinite, subject to the condition that only a finite number of states 

can be reached in a finite amount of time. Since the memory requirements might still 

be excessive, we suggest a bounding technique based on truncation. 
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1     Introduction 

In the-past decade, stochastic Petri nets (SPNs) have received much attention from re- 

searchers in the performance and reliability arena and have been extensively applied to 

the performance and reliability modeling of computer, communication, manufacturing, and 

aerospace systems [4, 5, 7, 10, 23]. While there is agreement on the appropriateness of SPNs 

as a description formalism for a large class of systems, two radically different solution ap- 

proaches are commonly employed: simulation and state-space-based analysis. Simulation 

allows to associate general distributions to the duration of activities (SPN transitions), but 

it requires multiple runs to obtain meaningful statistics. This problem is particularly acute 

in reliability studies, where many runs might be required to obtain tight confidence intervals. 

With simulation, the state of the SPN is composed of the marking, describing the structural 

state of the SPN, and the remaining firing times, describing how long each transition in the 

SPN must still remain enabled before it can fire. The simulated time 9 is advanced by firing 

the transition with the smallest remaining firing time. 

State-space-based analysis has been mostly applied to SPNs whose underlying process is 

a continuous-time Markov chain (CTMC), that is, to SPNs with exponentially distributed 

firing times [3, 12, 25, 26]. Except for numerical truncation and roundoff, exact results are 

obtained, but the approach has two limitations: the number of SPN markings increases 

combinatorially, rendering unfeasible the solution of large models, and generally-distributed 

activities must be modeled using "phase-type (PH) expansion" [15]. PH distributions can 

approximate any distribution arbitrarily well, but it is difficult to exploit this fact in practice 

because the expansion exacerbates the state-space size problem. 

Discrete distributions for the timing of SPNs have received less attention. This is un- 

fortunate, since deterministic distributions (constants) are often needed to model low-level 

phenomena in both hardware and software, and the geometric distribution is the discrete 

equivalent of the exponential distribution and can approximate it arbitrarily well as the size 

of the step decreases. Furthermore, there is evidence supporting the use of deterministic 

instead of exponential distributions when modeling parallel programs [1]. 

If all the firing distributions are geometric with the same step, the underlying process is 

a discrete-time Markov chain (DTMC) [25]. Such SPNs can model synchronous behavior, 

as well as the main aspect of asynchronous systems: the uncertainty about the ordering 

of quasi-simultaneous events. A DTMC is described by a square one-step state transition 

probability matrix II and an initial state probability vector TT^. The state probability vector 

at step n can be obtained with the iteration (poioer method): ir™ = TT^'^II. This result 

was extended in [11] to include immediate transitions, which fire in zero time, and geometric 

firing distributions with steps multiple of a basic unit step, possibly with parameter equal 

one. that is, constants.   [29] restates these results in more detail, and uses the concept of 
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weight to break the ties, following [3] and, more closely, [13]. Generalized Timed Petri Nets 

(GTPN) have also been proposed [19], where the steps of the geometric firing times for 

each transition can be arbitrary, unrelated, real numbers. A DTMC can be obtained by 

embedding, but the analysis is restricted to steady-state behavior and the state space of the 

DTMC can be infinite even when the underlying untimed PN has a finite reachability set. 

Analogous considerations hold for D-timed PNs [30]. 

We generalize and formalize the results in [13] and show how, using phase-expansion, a 

DTMC can be obtained even if the firing time distributions are not geometric, as long as 

firings can occur only at some multiple of a unit step. The state can then be described by 

the marking plus the phase of each transition. This extends the class of SPNs that can be 

solved analytically, but two limitations still exist: the existence of a basic step and the size of 

the state space. By using a fine step, arbitrary steps can be approximated, but this increases 

the state space. 

Approaches to solve models with a large state space have been proposed for both steady- 

state and transient analysis. [6] considers the reliability study of a SPN with exponentially 

distributed firing times, under the condition that the reachability graph is acyclic. The 

underlying CTMC is then acyclic as well, and a state can be discareded as soon as the 

transitions out of it have been explored, resulting in an algorithm offering large savings 

in memory and computations with respect to traditional numerical approaches. However, 

acyclic state spaces arise only in special cases, such as reliability models of non-repairable 

systems. 

For transient analysis of a general CTMC, Jensen's method [21], also called uniformization 

[17, 27], is widely adopted. [18] outlines a dynamic implementation of the algorithm, where 

the state space is explored as the computation of the transient probability vector proceeds, 

not in advance, as normally done. This allows to obtain a transient solution even if the state 

space is infinite, provided that the transition rates have an upper bound. 

If the CTMC contains widely different rates, the number of matrix-vector multiplications 

required by uniformization can be excessive. Proposals to alleviate this problem are selective 

randomization [24] and adaptive uniformization [28], both based on the idea of allowing 

different uniformization rates, according to the set of states that can be reached at each 

step. The latter, in addition, can be used with infinite state spaces even if the rates have no 

upper bound. However, the method can incur a substantial overhead, and it appears that 

an adaptive step is advantageous only in special cases or for short time horizons. 



In Sections 2, 3, and 4 we define the underlying untimed PN model, the class of DDP 

distributions used for the temporization of a PN, and the resulting DDP-SPN formalism, 

respectively. Section 5 discusses the numerical solution of a DDP-SPN, by building and 

solving its underlying stochastic process, a DTMC. Section 6, examines approaches to cope 

with large state spaces. 

2     The PN formalism 

We recall the (extended) PN formalism used in [12,14]. A PN is a tuple (P, T,D~ ,D+ 7D°,y,g,fi 

where: 

[o] 

• 

• 

P is a finite set of places, which can contain tokens. A marking \i G IN' ' defines 

the number of tokens in each place p £ P, indicated by jip (when relevant, a marking 

should be considered a column vector). D~, D+
7 D°, and g are "marking-dependent", 

that is, they are specified as functions of the marking. 

T is a finite set of transitions. P C\T — 0. 

Vp G P.yt G T^ji G IN|P|, D^t{p) G IN, D+t{fi) G IN, and D°Pit{n) G IN are the 

multiplicities of the input arc from plot, the output arc from t to p, and the inhibitor 

arc from p to t, when the marking is /i, respectively. 

• y C T x T is an acyclic (pre-selection) priority relation. 

• Vie r,V//G JN^,gt(p) 6 {0,1} is the guard for t in marking y«. 

• //f°l € IN'
F

' is the initial marking. 

Places and transitions are drawn as circles and rectangles, respectively. The number of 

tokens in a place is written inside the place itself (default is zero). Input and output arcs 

have an arrowhead on their destination, inhibitor arcs have a small circle. The multiplicity 

is written on the arc (default is the constant 1); a missing arc indicates that the multiplicity 

is the constant 0. The default value for guards is the constant 1. 

A transition t £ T is enabled in marking fj, iff all the following conditions hold: 

1- 9t(v) = I-      ' 

2. VpeRD-t((i)<iip. 

3. yPeP,D;it(fi)>nPovD;it(fi) = o. 

4. Vu G T.u )/- t or u is not enabled in ji (well defined because >- is acyclic). 
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Figure 1: Examples of DDP distributions. 

Let £(ß) be the set of transitions enabled in marking p. A transition t £ £(ß) can fire, 

causing a change to marking M(t. /i), obtained from ji by subtracting the "input bag" D~t(fi) 

and adding the "output bag" D+t(p) to it: M(t,(i) - ß - D~t{p) + D^t(ß) = /j, + D,j{fi), 

where D = D+—D~ is the incidence matrix. M can be extended to its reflexive and transitive 

closure by considering the marking reached from p after firing a sequence of transitions. The 

reachability set is given by 1Z = {fj, : 3a <E T* A p. = M.(a, /i'-0')}, where T* indicates the set 

of transition sequences. 

3    Discrete phase distributions 

We now define the class V of (possibly defective) discrete phase (DDP) distributions, which 

will be used to specify the duration of a firing time in a SPN. A random variable X is said to 

have a DDP distribution, X ~ V, iff there exists an absorbing DTMC {A^ : k G IN} with 

finite state space A = {0,1,...,??} and initial probability distribution given by [Pr{A^ = 

i}.i <E A], such that states A \ {0,rc} are transient and states {O.n} are absorbing, and X is 

the time to reach state 0: X = min{k > 0 : A[k] = 0}. If Pr{A[0^ = 0} > 0, the distribution 

has a mass at the origin. If Pr{A^ = i} > 0 and state i can reach state n, the distribution 

is (strictly) defective. 

V is the smallest class containing the distributions Const(O), Const(1), and Const(oo) 

and closed under: 

• Finite convolution: if X\ ~ V and A 2 ~ V1 then X = Xi + X2 ~ T>. 

• Finite weighted sum:   if A"i '~ V, X2 ~ V and B G  {0,1} is a Bernoulli random 

variable, then X = BX1 + (1 - B)X2 ~ 2>. 

• Infinite geometric sum: if {Xk ~ V : k £ IN+} is a family of iid's and N is a geometric 

random variable, then X = Yli<k<N -%-k ~ *D. 
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Figure 2: Equivalent DTMC representations 

The geometric and modified geometric distributions with arbitrary positive integer step, 

Geom(a,u) and ModGeom(a,cu), 0 < a < 1, u 6 1N+, the constant non-negative integer 

distribution, Const(üü). üJ € IN, and any discrete distribution with finite non-negative integer 

support are special cases of DDP distributions. An example of a random variable with non- 

negative integer support which does not have a DDP distribution is Ar2, where N ~ Geom(a). 

Fig. 1 shows examples of DDP distributions. The "initial state" 6, for begin, has zero 

sojourn time and is introduced to represent graphically the initial probability distribution. 

We use this representation since it allows to estimate the "complexity" of a DTMC by 

counting the number of nodes and arcs in its graph. For simplicity, the last state, e.g., 

4 for Geom(a,3) and 3 for Const(2), can be omitted if it is not reachable from b (if the 

distribution is actually not defective). Unfortunately, the DTMC corresponding to a given 

DDP distribution might not be unique, even if the number of states if fixed. For example, 

the time X to reach state 0 for the DTMCs in Fig. 2, both with five nodes and seven arcs, 

has distribution Unif(0,3), that is, Pr{X = i} = 1/4, for i G {0,1,2,3}. 

4     The DDP-SPN formalism 

SPNs are obtained when the time that must elapse between the instant a transition becomes 

enabled and the instant it can fire, or firing time, is a random variable. By restricting the 

firing times distributions to V, we obtain the DDP-SPNs, corresponding to a stochastic 

process where the state has the form s — (//, <j>) £ IN' ' x IN' '. The structural component 

jjL is simply the current marking. The timing component <f> describes the current "phases", 

the state for the DTMC chosen to encode the DDP distribution associated with the firing 

time of each transition. The firing time of a transition t elapses when its phase d>t reaches 0. 

Formally, a DDP-SPN is a tuple (P, T, D~,D+,D\ y,g, /z™, $, G, F, <fi0\ ^, w) where: 

(P, T, D~,D+,D°,y,g, ^) define a PN. 

• \/t £ T.yf.i £ TZ, $i(/x) C IN is the finite set of possible phases in which transition t can 

be when the marking is ji. 



• V/i G TZ,Vt G £(zi).V?',j G $t(pL),Gt{n,i-,j) is the probability that the phase of £ 

changes from i to j at the end of one step, when t is enabled in marking fi. Hence, 

Sje$f(M) Gtil^^J) - 1. 

• V/z G ft,Vu G £(M),V* G T,VZ G $*(^),VJ G ^(^(U,//)),^^',;) is the prob- 

ability that the phase of t changes from i to j when u fires in marking /i.   Hence, 

• VteT, <fif] G $i(^[0]) is the phase of t at time 0. 

• y- C T x T is an acyclic (post-selection) priority relation. 

• Vzz G 1Z,WS C £(ß).\/t G S,wt\s((J>) G IR+ is the firing weight for i when 5 is the set of 

candidates to fire in marking //. 

A transition £ G T is said to be a candidate (to fire) in state s = (/z, 6) iff all the following 

conditions hold: 

1. teS(ii). 

2. <f>t = 0. 

3. V« G T, tt ^ f or u is not a candidate in s (remember that y- is acyclic). 

Let C(s) be the set of candidates in state 5. Gt(ß. •, •) is the one-step transition probability 

matrix of the DTMC {<fif] : k G M}, with state space $t(/u), corresponding to the DDP- 

distributed firing time for transition t in marking /j, in isolation, that is, assuming that no 

other transition firing affects the firing time of t. However, if another transition u fires 

before t, leading to marking //', the phase 6t of t will change according to the distribution 

FuAViPti*)- Furthermore, after the firing of u, the phase of t will evolve according to 

Gt{ß'. •;•), which might differ from Gf(/z,»,«), it can even have a different state space, 

$«(//) instead of $t{p). 

We stress that pre-selection and post-selection have a different semantic. Only in the 

case of immediate transitions the two become equivalent. Assume that only t and u satisfy 

the input, inhibitor, and guard conditions in fi. We have three options, resulting in three 

different behaviors: 

• Specify a pre-selection priority between them, for example t >- u, so that u will not be 

enabled when t is. This means that the phase 6t of t evolves according to G4(/z,«,»), 

while 6U does not. The same effect would be achieved using a guard gu(/J.) = 0. 



• Specify no pre-selection priority, but a post-selection priority between them, for exam- 

ple t >- u. This means that the phases of both t and u evolve in //. The first one to 

reach phase 0 will fire but, in case of a. tie, t will be chosen. However, if <f)u = 0 when 

t fires and if FfiU(/i, 0, 0) = 1, u might be a candidate in the new marking, and fire 

immediately after t. 

• Specify neither a pre-selection nor a post-selection priority between them. Then, as in 

the previous case, t and u are in a race to reach phase 0, but a tie is now resolved by 

a probabilistic choice according to the the weights: wt\{tMy([t) and wu^tiUj(/j,), respec- 

tively, where w is a normalization of w to ensure that the weights of the candidates in 

a marking sum to one. 

Let (//M, (£[n]) be the state of the DDP-SPN at step n. Then, the process {(/jH, jW) : n € IN} 

is a DTMC with state space S C ESP™ x IN'r'. Its one-step transition probability matrix 

JQ is determined by considering the possibility of simultaneous firings. Consider a state 

s = (ft, ft). If C(s) / 0, one of the candidates will fire immediately, and the sojourn time in 

6 is zero. Otherwise, the sojourn time in s is one. Following GSPN [3] terminology, we call 

s a vanishing or tangible state, respectively. Hence, s is tangible iff <f> > 0. 

Let Ss.s' be the set of possible event sequences events leading from a tangible state 

s = (/i, S) to a tangible state s' = (/«', ft) in one time step: 

SStS, = {a={^\,ft°\^\^1\ftl\^\...^-1\ftn-lh^1\^n\ft^) : 
n >0,^(0) =/i,//(n) = n'A{n) = ft, 

Vf€^),G((/i,^,^o))>0, (1) 

Vz, 0 < i < n, t{i) € C(^l\ ftl)), ^l+l) = M(t{t\ fi{l))} (2) 

VtGT,F<(!)!t(^),#,rf'+1))>0}. (3) 

(1) considers the one-step evolution of the phases for the enabled transitions in isolation, 

while (2) and (3) consider the sequentialized firing in zero time of zero or more transitions 

at the end of the one-step period. Hence, (fi^\ ft^) is a vanishing state, for 0 < i < n. 

The value of the nonzero entries of n is obtained by summing the probability of all 

possible sequences leading from 5 to s': 

Hs,s> =    ]C   I   II   GtiPifaA 
cr€SSiS, \te£(ß) 

/n-1 

i=0 \tGT 

(«)    ^    ^ + 1>) 5  ft 
er 

In a practical implementation, n is computed one row at a time.   The complexity of 

computing row s of n can be substantial, depending on the length and number of sequences 
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F, - Geom(p) I      I 

Fu ~ Const(O) 

w„= 1-cd 

FT ~ Geom(g) 

Fv - Const(O) 

J n\. = a a(l-a)-/? 

Figure 3: (0, 0) can reach an infinite number of markings in one time step. 

in Us' Ss,s'-   K Us' Ss,s' is infinite, special actions must be taken.   This can happen for two 

reasons: 

• 7Z is itself infinite, and state s can reach an infinite number of states in a single 

step. Consider, for example, a single queue with batch arrivals of size N > 0, where 

N ~ Geom(a), as in Fig. 3. Following the firing of t, a geometrically distributed 

number of tokens will be placed in p2: when the token is finally removed from px (by the 

firing of v). p2 contains N tokens with probability a(l — a)-^-1. This represents a batch 

arrival of size N at the server modeled by place p2 and transition y. Unfortunately, 

finiteness of 71 is an undecidable question for the class of Petri nets we defined, since 

transition priorities alone make them Turing equivalent [2]. 

• SS,S' can be infinite for a particular s\ If 71 is finite, this requires the presence of 

arbitrarily long paths over a finite set of vanishing states, just as for a "vanishing 

loop" in a GSPN [11]. In a practical implementation, these cycles can be detected and 

managed appropriately. 

The size of the DTMC underlying a DDP-SPN is affected by the choice of the representa- 

tion for the DDP distributions involved. Consider, for example, the DDP-SPN in Fig. 4(a), 

and assume that transitions rl5 t2, and t3 have firing time distributions Const(1), Unif(0,3), 

and Const(2), respectively. The corresponding DTMCs obtained using the two representa- 

tions of Fig. 2 for Unif(0,3) are shown in Fig. 4(b) and 4(c), respectively. The number of 

states is ten in the first case, seven in the second (the value of ot is specified as "•" whenever 

t is not enabled and either it cannot become enabled again or its phase is going to be reset 

upon becoming enabled). The difference between the size of the two DTMCs is due to a 

lumping [22] of the states, and it would be even greater if t3 had a more complex distribu- 

tion. By postponing the probabilistic decision as much as possible, the second DTMC lumps 
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Figure 4: The effect of equivalent Unif (0, 3) representations. 

states (Oil, »12), (Oil, «22), and (Oil, »32) of the first DTMC into a single one, (Oil, «32), 

and states (Oil, «11) and (Oil, »21) into (Oil, «21). 

5    Analysis of DDP-SPNs 

When using a SPN to model a system, a reward rate pß is associated to each marking \x. 

Starting from {(p\n\(ftn^) : n <G IN}, it is then possible to define two continuous-parameter 

processes: {y(9),9 > 0}, describing the instantaneous reward rate at time 9: y{9) = pß(e)-, 

where p(9) = plmax^n^\ and {Y(6),6 > 0}, describing the reward accumulated up to time 

9,Y(8) = fZPli{T)dT. 

We consider the computation of the expected value of y{9p) and Y{9p) for finite values 

of 6p- Let 7T^ = W^\ = Pr{s^ = s}\ be the state probability vector at time n. Once 

the state-space S corresponding to the initial state (fP-°\ (ft0') has been generated, any initial 

probability vector over S can be used for the initial probability vector 7P°% there is no 

requirement to use a vector having a one in position (fi^°\ <ft0^) and a zero elsewhere. From 

7r^, we can obtain TT^ iteratively, performing n matrix-vector multiplications: 

IT1  '  = 7TL n-1 n (4) 

Since the DTMC can change state only at integer times, TT(9) = 7r^ for 9 £ [n,n + l). Practi- 

cal implementations assume that the state space is finite and that the transition probability 

matrix II is computed before starting the iterations. The following shows the pseudo-code 

to compute E[y(9p)] and E[Y(6p)] with the "power method": 

1. "compute <S, PI, and 7r^"; 

2. Y <- 0; vr <- TTM; 

3. for n = 1 to [9F\ do 
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Figure 5: A DDP-SPN with an ergodic underlying DTMC. 

4. Y = Y + E(ß,j,)€sPß7r(ß,ty, 

5. 7T <- TTII: 

6. E[F(öF)] <- y + (öF- [oF\)zM)esp^(^ 
7. £[?/(#F)] <- £(^)g$/^7IW); 

If the state space 5 is finite, it is possible to approximate the steady-state probability vector 

■K* = lim^co 7T^ by iterating the power method long enough. If the DTMC is ergodic, 

though, other numerical approaches are preferable, based on the relation TT* = 7r*II, which 

can be rewritten as the homogeneous linear system T*(U — I) = 0, subject to Ylses K = 1- 

Fast iterative methods such as successive over-relaxation (SOR) [12] or multilevel methods 

[20] can then be employed, although their convergence is not guaranteed. Fig. 5 offers an 

example of an ergodic DTMC obtained from a DDP-SPN. 

6     Coping with large state spaces 

The power method algorithm described requires to generate the state space S and II, and 

then to iterate using Eq. (4), hence it assumes a finite S. However, a "dynamic" state space 

exploration has been proposed to remove this restriction [16, 18]. The general idea is to 

start from the initial state, or set of initial states and iteratively compute both the set of 
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reachable states and the probability of being in them after n steps, for increasing values of n. 

The approach has been proposed for the transient analysis of CTMCs using uniformization 

[17, 21; 27], where, in practice, the iterations must be stopped at a large but finite n, thus 

resulting in a truncation error which can be bounded. However, the same approach is even 

more appropriate for the transient analysis of DTMCs, since, in this case, no truncation is 

required: the exact number of steps.to be considered is determined by the time 6F at which 

the results are desired. 

Let S[n] be the set of states explored at step n. States in S \ S[n] have zero probability 

at step n, given the initial state(s). Then, <S[0] is completely determined by TT^\ which is 

given, and <SM is obtained from S[n~1] by considering the nonzero entries in IIS). for each 

,s £ Si"-1!. The pseudo-code for this modified power method algorithm is: 

1. n <- 0; 7T <- 0; 9 <- 0; S <- {(^,<^)}; N <- <S; n^^ <- 1.0; 

2. for n = 1 to [9F\ do 

3. Y = ^ + H(p,<t>)es Pß™(fj,,4,)\ 

4. M' < -0; 
5. while 3s G Af do 

6. for each s' such that Ss,s' / 0 do 

7. "compute ns.s'"; 

8. if s' g" S then 

9. AP <-AT U {s'}; S *-S U • 

10. tf+-Ar\{s}; 

11. A/% -Af'; 

12. 7T   <— nil; 

13. £[r(*F) ^Y + E(ß,<t,)esPß^(ß,<b){^F - \9F\); 

14. £[</(#F)] *- Y.(v,d>)es Pß^^y, 

At the beginning of the n-th iteration, S and S\Af contain the states reachable in less than 

n and n - 1 steps, respectively. The rows IIS), for the states s e S \ Af have been built in 

previous iterations, while those corresponding to states s G Af still need to be computed. 

During the n-th iteration, Af' accumulates the states reachable in exactly n. but not fewer, 

steps. These states will be explored at the next iteration. This algorithm allows to study a 

DDP-SPN regardless of whether S is finite or not, provided that: 

• 

• 

6p is finite (transient analysis). 

A finite set of states has nonzero initial probability: \{s : ir^ > 0}| < oo. 
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• Each row of II contains a finite number of nonzero entries or, in other words, if the 

marking is ji at time 6. the set of possible markings at time 6 + 1 is finite. 

The first two requirements can be easily verified. The third requirement is certainly sat- 

isfied if Ss,si does not contain arbitrarily long sequences. This requirement does not allow 

to analyze exactly, for example, the DDP-SPN in Fig. 3. However, this behavior can be 

approximated arbitrarily well using a truncated geometric distribution for the size of the 

batch arrivals. Incidentally, we observe that the continuous version of this SPN, where t 

and y are exponentially distributed, shows that Proposition 1 in [9] does not hold for un- 

bounded systems: there is no SPN with only exponentially distributed firing times equivalent 

to this GSPN (equivalently, there is no SPN with only geometrically distributed firing times 

equivalent to the DDP-SPN in Fig. 3). 

6.1     Truncating the state space 

The modified power method algorithm can, in principle, perform the transient analysis of any 

DDP-SPN that reaches only a finite number of markings (hence states) in a finite amount 

of time. In practice, though, the number of markings reachable in a finite time might still 

be too large, hence we need to find ways to reduce the memory requirements. 

A first observation allows us to reduce the number of states that must be stored without 

introducing any approximation. If all the firing times have geometric distributions with 

parameters less than one, there is a nonzero probability of remaining in a state s for an 

arbitrary number of steps, once s is entered. Indeed, the assumption of our modified power 

method algorithm, and of [16, 18], is that the set of explored states never decreases: <Ü>M c 

SW cs® c.... 
However, some firing times might have distributions with finite support, so it is possible 

that 7i-M > 0 while 7r^+1J = 0 and, in this case, state s can be discarded before computing 

Sln+2}. Then, we can redefine <5^ to be the set of time-reachable states at step n, that is, 

the states having a nonzero probability at step n: S^ = {s : TT^ > 0}. 

<?M is completely determined by TT^°\ which is given, and TT^, hence S^n\ is obtained 

from TT-f"-1] by computing IISj. for each s € S^n~l\ and then restricting the usual matrix- 

vector multiplication 7rM = TT^'^U to the entries corresponding to 5["~1], since the other 

entries are zero anyway. Extreme cases are illustrated in Fig. 6, where, in (a), <S^ = 

{(lj-1) : 0 < j < n}, while, in (b), S™ = {(In, 1)}. 

Hence, if a state s is time-reachable at step n, but time-unreachable at step n + 1, we 

can destroy it and its corresponding row in II at the end of step n + I. At worst, the same 

state s might become time-reachable again at a later step, and the algorithm will have to 

compute the corresponding row ns,. for the transition probability matrix again. 
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F, ~Geom(0.9) 
11,1 -0.9 H 12,1 -0.9* 

F, -Const(l) 

10,1 1 -* 11,1 —1 -* 12,1 

Pi 

-1 * • ■ • 

(b) 

Figure 6: A case where SH C S^n+^ and another where 5^ % S^n+1l 

The observation that the <S^ are not required to be a sequence of nondecreasing subsets 

is, we believe, new. Unfortunately, geometric distributions with parameter less than one are 

often used in practice, resulting in an increasingly larger set of states to be stored at each 

step of the modified power method. 

Further observing that some markings might have negligible probability, however, allows 

us to avoid keeping S^ in its entirety, at the cost of an approximate solution, but with 

computable bounds. For example, in Fig. 6(a), the probability of marking (1&, 1) at step 

n, k < rc, is (£) 0.9fc0.1"_fc, which is extremely small when the difference between n and k 

is large. An approximate solution approach based on truncation of the state-space might 

then be appropriate. At step n, only the states in S^ C <SW are considered. For each state 

s € <S^. its computed probability 7r™ is an approximation of the exact probability 7r^ at 

step n: 

1. Initially, ir^ is known, so set 

7T [0] IX [0] and        <S[0] <- {s : it® > 0}. 

The "total known probability mass" and the "total known sojourn time" at the begin- 

ning are 

\\^°% =   £ TrfUl        and        A^ <- 0. .[o] 

sesw 

2. As the iteration progresses, the size of S^ might grow too large and states with proba- 

bility below a threshold c must be truncated, destroying them and their corresponding 

row in II, de facto setting their probability to zero 

for each s G <SM do if ir^ < c then 

Compute the new set of kept states 

S[n] <- {s : TTW > 0}. 

7H 0. 
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Regardless of whether truncation is performed, the total known probability mass at 

step n and the total known sojourn time up to step n are 

K[n]   <-   \\7t[n%  =     X)    ^   ^  ! and 1<[n]   *~ 1<[n~1] + KM  ^ U- 
s€SM 

Without other information, we can only say that the probability of being in state 

s € S™ at step n is at least ir^, while we do not know how the unaccounted probability 

mass K™ — K™ should be redistributed (we know that it should be redistributed over 

the states in S^n\ hence some of it could be over states in <S^ C S^n\ but we have no 

way to tell). An analogous interpretation holds for A'^l 

3. Truncation can be performed as many times as needed, although every application 

reduces the value of K>-n', thus increases our uncertainty about the state of the system. 

4. Upon reaching time 0F, we know that, with probability at least K^
BF

^\ the system is 

in one of the non-truncated states IS^FJ]. Conversely, a total of 

K(0F) ^9F- K[leFi] + K
[[6

^
]
{9F - [6F\) 

sojourn time units are unaccounted for. Hence, assuming that the reward rates associ- 

ated to the states have an upper and lower bound pi and pu, E[Y(9F)} and E[y(9F)} 

can be bounded as well. If E[Y(9F)] and E[y(9F)] are the approximations obtained 

using our truncation approach, 

E[y(9F)} + PL(l-K^^)   <  E[y(9F)}   <  E[y(0F)} + Pu(l - K^), 

E[Y(0F)] + pLK(9F)  < E[Y(9F)}  < E[Y(0F)] +PuK(0F). 

Highly-reliable systems are particularly good candidates for this state-space truncation, since 

they have a large number of low-probability states. 

6.2     Embedding the DTMC 

When performing steady-state analysis, it is possible to perform an embedding of the DTMC, 

observing it only when particular state-to-state transitions occur. For a simple exam- 

ple, consider the DTMC in Fig. 5, which has a transition from state (000111,« • «1) to 

state (111000,132«) with probability one. If the firing time of transition t4 were changed 

to Const(7), instead of Const(1), the DTMC would have to contain six additional states, 

(000111,« • «7) through (000111,« • «2). This is obviously undesirable, and it can be eas- 

ily avoided by an embedding. The DTMC of the embedded process is exactly that of Fig. 

5, we must simply set the expected holding time hs of each state s to one, except that 
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of (000111,» • »1), which is set to seven. Then, we can solve the embedded DTMC for 

steady state and obtain a steady-state probability vector it for the embedded process. The 

steady-state probability vector of the actual process is then obtained by weighting x accord- 

ing to the holding times, a well known result applicable to the steady-state solution of any 

semi-Markov process [8]: irs = Tcshs (Y,U£6 Kuhu)    . 

For transient analysis, the same idea can be applied, but in a much more restricted 

way. If, at step n, every state in <SM is such that the minimum time before a change of 

marking is k > 1, we can effectively perform an embedding. In the modified power method 

algorithm, this requires advancing n by k instead of just one step in the outermost loop and 

adjusting the increment of Y in statement 3 accordingly. It should be noted, however, that 

this situation is unlikely to occur, since the set <SM may contain many states s = (//. <^>), and, 

for each of them, the DTMC describing the firing time of each enabled transition t in \i must 

satisfy mini/ G IN : Pr{©['] = 0 | 4>f] - 6t} > O} > k. This is analogous to the requirement 

for an efficient application of adaptive uniformization [28] and, as stated in the introduction, 

it is unlikely to happen in general, especially for large values of OF- 

7    Conclusion and future work 

We defined a class of discrete-time distributions which, when used to specify the firing time 

of the transitions in a stochastic Petri net, ensures that the underlying stochastic process is 

a DTMC. We then gave conditions under which the transient analysis of this DTMC can be 

performed even if the state space is infinite. In practice, though, the memory requirements 

might still be excessive, hence we explored some state-space reduction techniques. 

The implementation of a computer tool based on the DDP-SPN formalism is under way. 

In particular, algorithms for the efficient computation of the rows of the transition probability 

matrix, IIS>., are being explored. 
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